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Abstract

We consider probability measures,d� = w(�) d�
2� + d�s, on the unit circle,�D, with Verblunsky

coefficients,{�j }∞
j=0. We prove for�1 �= �2 in [0, 2�) that

∫
[1− cos(� − �1)][1− cos(� − �2)] logw(�)

d�
2�

> − ∞

if and only if

∞∑
j=0

∣∣∣∣
{
(� − e−i�2)(� − e−i�1)�

}
j

∣∣∣∣
2

+ |�j |4<∞,

where� is the left shift operator(��)j = �j+1. We also prove that

∫
(1− cos�)2 logw(�)

d�
2�

> − ∞
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if and only if

∞∑
j=0

|�j+2 − 2�j+1 + �j |2 + |�j |6<∞.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is a contribution to the theory of orthogonal polynomials on the unit circle
(OPUC); see[6,15,16,18] for background. Throughout,d� will be a non-trivial probability
measure on the unit circle,�D, in C, which we suppose has the form

d� = w(�)
d�
2�

+ d�s, (1.1)

whered�s is singular with respect to Lebesgue measured� on�D.
The Carathéodory and Schur functions,F andf , associated tod� are given forz ∈ D

by

F(z) =
∫

ei� + z

ei� − z
d�(�) (1.2)

= 1+ zf (z)

1− zf (z)
. (1.3)

The Verblunsky coefficients{�j }∞j=0 can be defined inductively by the Schur algorithm

f (z) = �0 + zf1(z)

1+ z�̄0f1(z)
, (1.4)

which defines�0 ∈ Dandf1. Iterating gives�1, �2, . . .andf2, f3, . . . .That�j ∈ D (rather
than justD̄) follows from the assumption thatd� is non-trivial, that is, has infinite support
sof is not a finite Blaschke product. Actually, (1.4) defines what are usually called Schur
parameters; theVerblunsky coefficients are defined by a recursion relation on the orthogonal
polynomials. The equality of these recursion coefficients and the Schur parameters of (1.4)
is a theorem of Geronimus [5]; see [15]. We will use the definition in (1.4).
Themost famous result in OPUC is Szegő’s theoremwhich, inVerblunsky’s format [19],

says

log

( ∞∏
j=0

(1− |�j |2)
)

=
∫

log(w(�))
d�
2�

. (1.5)

In this expression, both sides are non-positive (since|�j | < 1, and Jensen’s inequality im-
plies

∫
log(w(�)) d�

2� � log(
∫
w(�) d�

2� )� log(�(�D))). Moreover, (1.5) includes the state-
ment that both sides are finite (resp.,−∞) simultaneously. Thus (1.5) implies a spectral
theory result.
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Theorem 1.1.

∫
log(w(�))

d�
2�

> −∞ ⇔
∞∑
j=0

|�j |2 < ∞. (1.6)

This form of the theorem has caused considerable recent interest due to work of Deift–
Killip [1] and Killip–Simon [7] which motivated a raft of papers [2,8–11,14,17,20].
In [15, Section 2.8], Simon found a higher-order analog to (1.6) that allows log(w(�)) to

be singular at a single point:

Theorem 1.2.

∫
(1− cos�) log(w(�))

d�
2�

> −∞ ⇔
∞∑
j=0

|�j+1 − �j |2 + |�j |4 < ∞. (1.7)

Remark. This result allows a single singular point of order 1 in log(w(�)) at� = 0. By a
simple rotation argument[15], if cos(�) is replaced by cos(�−�1), |�j+1−�j |2 is replaced
by |�j+1 − e−i�1�j |2.

Our goal in this paper is to analyze two singularities or a single double singularity. We
will prove that

Theorem 1.3. For �1 �= �2,∫
(1− cos(� − �1))(1− cos(� − �2)) log(w(�))

d�
2�

> −∞

⇔
∞∑
j=0

∣∣∣∣
{
(� − e−i�2)(� − e−i�1)�

}
j

∣∣∣∣
2

+ |�j |4 < ∞. (1.8)

In this theorem,� is the operator on sequences

(��)j = �j+1. (1.9)

We will also prove a result for�1 = �2.

Theorem 1.4.∫
(1− cos�)2 log(w(�))

d�
2�

> −∞

⇔
∞∑
j=0

|�j+2 − 2�j+1 + �j |2 + |�j |6 < ∞. (1.10)

Again, one can replace cos(�) by cos(� − �1) if �j+2 − 2�j+1 + �j is replaced by
{(� − e−i�1)2�}j .
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Given the form of these theorems, it is natural to conjecture the situation for arbitrarily
many singularities:

Conjecture 1.5. For {�k}�k=1 distinct in[0, 2�),
∫ �∏

k=1

(1− cos(� − �k))
mk log(w(�))

d�
2�

> −∞

⇔
∞∑
k=0

∣∣∣∣
{ �∏
k=1

[� − e−i�k ]mk�
}
j

∣∣∣∣
2

+ |�j |2max(mk)+2 < ∞. (1.11)

Independently of our work, Denisov–Kupin[3] have found conditions on the�’s equiv-
alent to the left-hand side of (1.11) being finite. However, their conditions are complicated
and even for the case

∑�
k=1 mk = 2, it is not clear they are equivalent to the ones we have

in Theorems 1.3 and 1.4 (although they must be!).
In Section 2,we review the featuresweneedof the relativeSzegő functionwhichwill play

a critical role in our proofs, and we compute its first two Taylor coefficients. In Section 3,
we prove Theorem 1.3 in the special case�1 = 0, �2 = �, and in Section 4, we prove
Theorem 1.4. With these two warmups done, we turn to the general result, Theorem 1.3, in
Section 5. The details of this are sufficiently messy that we do not think this direct approach
is likely to yield our conjecture.

2. The relative Szeg˝o function

In Section 2.9 of Simon [15], introduced the relative Szeg˝o function, defined by

(�0D)(z) = 1− �̄0f (z)

�0

1− zf1(z)

1− zf (z)
, (2.1)

where

�k = (1− |�k|2)1/2 (2.2)

andf, f1 are given by (1.3) and (1.4).
The key property of�0D we will need and the reason it was introduced is

Theorem 2.1(Simon[15, Theorem 2.9.3]).Letd�1 be the measure whose Verblunsky co-
efficients are(�1, �2, . . .). Letw be given by(1.1)andw1 by

d�1 = w1(�)
d�
2�

+ d�1,s. (2.3)

Supposew(�) �= 0 for a.e.ei� in �D. Then the same is true forw1 and

(�0D)(z) = exp

(
1

4�

∫
ei� + z

ei� − z
log

(
w(�)
w1(�)

)
d�

)
. (2.4)
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As in [7,14,17], this is the basis for step-by-step sum rules, as we will see.
To prove Theorems 1.3 and 1.4, wewill need to start with computing the first three Taylor

coefficients of log((�0D)(z)).

Theorem 2.2.We have that

log(�0D(z)) = A0 + A1z + A2z
2 + O(z3), (2.5)

where

A0 = log�0 (2.6)

A1 = �0 − �1 − �̄0�1, (2.7)

A2 = 1
2 �20 − 1

2 �21 + �1 − �2 − �1|�0|2 + �2|�1|2 − �̄0�2�2
1 + 1

2 �̄20�
2
1. (2.8)

Proof. f2(0) = �2, so

f1 = zf2 + �1
1+ z�̄1f2

= �1 + z�2�2
1 + O(z2).

Thus

f = zf1 + �0
1+ z�̄0f1

= �0 + z�1�2
0 + z2�2

0(�2�
2
1 − �̄0�21) + O(z3).

Plugging these into (2.1) yields the required Taylor coefficients.�

Remarks. 1.Denisov–Kupin [3] dowhat is essentially the samecalculation using theCMV
matrix.
2. (3.2) and (3.3) below show that (2.4) implies∫

log

(
w(�)
w1(�)

)
d�
2�

= 2A0, (2.9)

∫
log

(
w(�)
w1(�)

)
e−im� d�

2�
=

{
Am, m = 1,2,
Ā−m, m = −1,−2.

(2.10)

3. Singularities at antipodal points

As a warmup, in this section we prove the following, which is Theorem1.3 for�1 = 0,
�2 = �. By the remark after Theorem 1.2 this also gives the result for any antipodal�1 and
�2.

Theorem 3.1.
∫

(1− cos2(�)) logw(�)
d�
2�

> −∞ ⇔
∞∑
j=0

|�j+2 − �j |2 + |�j |4 < ∞. (3.1)
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Remark. Let �j be given and let�j be the sequence(�0, 0, �1, 0, �2, 0, . . .). Then (see

[15, Example 1.6.14]),w(�)(�) = 1
2w

(�)(12�) and the RHS of (3.1) for� = the RHS of
(1.7) for�. Thus (3.1) for� is (1.7) for�. This shows, in particular, that if a result like (3.1)
holds, it must involve|�j |4, rather than, say,|�j |6.

We begin by noting that ifQ(�) is real and

Q(�) =
∞∑

n=−∞
bne

in� (3.2)

then
∫

ei� + z

ei� − z
Q(�)

d�
2�

= b0 + 2
∞∑
n=1

bnz
n (3.3)

since(ei� + z)/(ei� − z) = 1+ 2
∑∞

n=1 z
ne−in�. Thus, by (2.9), (2.10), and

1− cos2(�) = 1
4 (2− e2i� − e−2i�) (3.4)

we have∫
(1− cos2(�)) log

(
w(�)
w1(�)

)
d�
2�

= A0 − 1
2 Re(A2) (3.5)

with A0 given by (2.6) andA2 by (2.8).

Lemma 3.2.We have that

A0 − 1
2 Re(A2) = B0 + C0 + D0 + F0 − F1 + G0 − G2, (3.6)

where

Bj = 1
2

[
log(1− |�j |2) + |�j |2 + 1

2|�j |4
]
, (3.7)

Cj = −1
4 (1− |�j+1|2)|�j − �j+2|2, (3.8)

Dj = −1
8 (|�2j+1 + �2j |2 + 4|�j�j+1|2), (3.9)

Fj = −1
2 Re(

1
2 �2j + �j+1 − �j+1|�j |2) + 1

4 |�j+1|2|�j |2 − 1
8 |�j |4, (3.10)

Gj = −1
4 |�j |2.

Remark. (3.5)/(3.6) is thus the step-by-step sum rule in the spirit of [7,14,17].

Proof. This is a straightforward but tedious calculation. The first term inB0 is justA0
(since log�j = 1

2 log(1− |�j |2)).A2 is responsible for the Re(·) terms inF0 − F1 and the
cross-terms in|�j − �j+2|2 and|�2j+1 + �2j |2. The|�j |2 + |�j+2|2 term inC0 is turned into

2|�j |2 byG0−G2, and then cancelled by the|�j |2 term inB0. Similarly, the|�j |4+|�j+1|4



120 B. Simon, A. Zlatoš / Journal of Approximation Theory 134 (2005) 114–129

in D0 (after adding the|�j |4 terms inF0 − F1) cancels the|�j |4 term inB0. Finally, the
|�j+1|2(|�j |2+|�j+2|2) term inC0 (after being turned into 2|�j+1|2|�j |2 by the|�j+1|2|�j |2
term inF0 − F1) cancels the 4|�j�j+1|2 term inD0. �

By iterating (3.5)/(3.6) and noting the cancellations from the telescopingFj −Fj+1 and
Gj − Gj+2 yields∫

(1− cos2(�)) log
(

w(�)
w2m(�)

)
d�
2�

= F0 − F2m + G0 + G1 − G2m − G2m+1 +
2m−1∑
j=0

(Bj + Cj + Dj). (3.11)

As a final preliminary, we need,

Lemma 3.3. (i) |Fj |� 13
8 ; |Gj |� 1

4,
(ii) |�j | < 1

2 ⇒ c1|�j |6� − Bj �c2|�j |6 for somec2 > c1 > 0,
(iii) |�j+1|4 + |�j |4� − 8Dj �4(|�j+1|4 + |�j |4).

Proof. (i) follows from |�j |�1, (ii) from − log(1− x) = ∑∞
j=1 x

j /j , and (iii) by noting

that 2Re(�2j�
2
j+1) + 2|�2j�2j+1|�0 and repeated use of|xy|� 1

2(|x|2 + |y|2). �

Proof of Theorem 3.1. We follow the strategy of Killip and Simon [7] as modified by Si-
mon and Zlatos̃ [17]. Suppose first that theRHSof (3.1) holds. Letw(n) be theweight for the
nth Bernstein–Szegő approximationwithVerblunsky coefficients(�0, �1, . . . , �n−1, 0, . . . ,
0, . . .), and letwn be the one for the measure�n with coefficients(�n, �n+1, . . .). By (3.11)
and(w(n))2m ≡ 1 for largem,∫

(1− cos2(�)) log(w(n)(�))
d�
2�

= F
(n)
0 + G

(n)
0 + G

(n)
1 +

n−1∑
j=0

(B
(n)
j + C

(n)
j + D

(n)
j )

so, by Lemma 3.3,|�j |6� |�j |4 → 0, and RHS of (3.1),

inf
n

[∫
(1− cos2(�)) log(w(n)(�))

d�
2�

]
> −∞. (3.12)

Up to a constant,
∫
(1 − cos2(�)) logw(�) d�

2� is an entropy and so upper semicontinuous
[7]. Thus (3.12) implies∫

(1− cos2(�)) logw(�)
d�
2�

> −∞. (3.13)

Conversely, suppose (3.13) holds. Since
∫
(1− cos2(�)) log(w2m(�)) d�

2� is an entropy up
to a constant, it is bounded above [7], and so the left-hand side of (3.11) is bounded below
asm varies.
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SinceF andG are bounded andB,C,D are negative, we conclude

∞∑
j=0

−(Bj + Cj + Dj) < ∞.

Since
∑

(−Dj) < ∞, Lemma3.3 implies
∑ |�j |4 < ∞. This implies�j → 0, so∑

(−Cj ) < ∞ implies
∑ |�j − �j+2|2 < ∞. �

Notice that the redistribution of the terms in (3.6) insures that all the essential terms on
the RHS of (3.11) (i.e.,Bj , Cj ,Dj ) are sign definite. This ultimately allows us to recover
(3.1) by passing to the limitm → ∞ in (3.11). The same strategy will be applied in the
proofs of Theorems 1.3 and 1.4.

4. Singularity of order 2

Our goal here is to prove Theorem 1.4. Since

(1− cos�)2 = 1
4 (2− ei� − e−i�)2

= 3
2 − ei� − e−i� + 1

4 e2i� + 1
4 e−2i�

we see, by (2.9)/(2.10) that
∫

log

(
w(�)
w1(�)

)
(1− cos�)2

d�
2�

= 3A0 − 2Re(A1) + 1
2 Re(A2) (4.1)

with A0, A1, A2 given by (2.6)–(2.8).

Lemma 4.1. The RHS of(4.1)= H0 + I0 + J0 + K0 − K1 + L0 − L2 where

Hj = 3
2 [log(1− |�j |2) + |�j |2],

Ij = −1
4 |�j+2 − 2�j+1 + �j |2,

Jj = 1
4 (�j �̄j+2 + �̄j�j+2)|�j+1|2 + 1

8 (�2j �̄
2
j+1 + �̄2j�

2
j+1),

Kj = −2Re(�j ) + 1
4 Re(�

2
j )

+1
2 Re(�j+1) − 1

2 Re(�j+1|�j |2) + Re[�̄j+1�j ] − |�j |2,
Lj = −1

4 |�j |2.

Proof. The non-cross-terms inI0 are

−1
4 (|�2|2 + 4|�1|2 + |�0|2) = −3

2 |�0|2 + (|�0|2 − |�1|2) + 1
4 (|�0|2 − |�2|2)

which cancel the|�0|2 term inH0, the final|�j |2 term inK0 − K1, and theL0 − L2 term.
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The cross-terms inI0 are

−1
2 Re(�̄2�0) + Re(�̄2�1 + �̄1�0)

= −1
2 Re(�̄2�0) + 2Re(�̄0�1) − Re(�̄0�1) + Re(�̄1�2).

The first term comes froma piece of1
2 Re(A2) (since�̄0�2�2

1 = �̄0�2(1−|�1|2)), the second
from the last term in−2Re(A1), and the last two are cancelled by the Re(�̄j+1�j ) term in
K0 − K1.
The�0 − �1 term inA1 leads to the first term inK0 − K1. The first term inJ0 comes

from the second half of̄�0�2�2
1 = �̄0�2 − �̄0�2|�1|2 (the first half in this expression gave a

cross-term inIj ). The second term inJ0 is the 1
2 �̄

2
0�

2
1 term inA2.

The remaining terms inA2, that is, the first six terms on the RHS of (2.8), give precisely
the remaining terms inK0 − K1. �

Lemma 4.2. The RHS of(4.1)= H̃0 + Ĩ0 + J̃0 + K̃0 − K̃1 + L̃0 − L̃2, where

H̃j = 3
2

[
log(1− |�j |2) + |�j |2 + 1

2|�j |4
]
,

Ĩj = Ij ,

J̃j = −1
4 |�j+1|2|�j − �j+2|2 − 1

8 |�2j+1 − �2j |2 − 1
4 (|�j+1|2 − |�j |2)2,

K̃j = Kj − 3
8 |�j |4 − 1

4 |�j+1|2|�j |2,
L̃j = Lj .

Proof. The non-cross-terms in the last two terms inJ̃0 give

−3
8 (|�0|4 + |�1|4) = −3

4 |�0|4 + 3
8(|�0|4 − |�1|4).

The first term cancels thẽH0 − H0 term, and the second, the first term in(K̃0 − K0) −
(K̃1 − K1).
Thecross-term in−1

4(|�j+1|2−|�j |2)2 and thenon-cross-terms in−1
4|�j+1|2|�j−�j+2|2

combine to−1
4|�j+2|2|�j+1|2 + 1

4|�j+1|2|�j |2 and are cancelled by the second term in
(K̃0 − K0) − (K̃1 − K1). The cross-term in−1

8|�2j+1 − �2j |2 is the second term inJ0 and

finally, the cross-term in−1
4|�j+1|2|�j − �j+2|2 is the first term inJ0. �

Lemma 4.3. (i) |K̃j |� 47
8 ; |L̃j |� 1

4,
(ii) |�j | < 1

2 ⇒ d1|�j |6� − H̃j �d2|�j |6 for somed2 > d1 > 0,
(iii) J̃j �0,
(iv)

∑∞
j=0 (−Ĩj ) + |�j |6 < ∞ ⇒ ∑∞

j=0 |�j+1 − �j |3 < ∞,

(v)
∑∞

j=0 (−Ĩj ) + |�j |6 < ∞ ⇒ ∑∞
j=0(−J̃j ) < ∞.

Remark. (iv) is essentially a discrete version of the inequality of Gagliardo[4] and Niren-
berg [12].
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Proof. (i) follows from |�j | < 1, (ii) is just (ii) of Lemma3.3 (sinceH̃j = 3Bj ), and (iii)
is trivial.
To prove (iv), we let� be given by (1.9) and let

� = � − 1 (4.2)

so since�∗ = �−1 (� is unitary on�2), we have

�∗ = �∗ − 1 = −�−1� = −�∗�. (4.3)

As a result, if� is a finite sequence, then∑
n

|(��)n|3 =
∑
n

(��)n(��̄)n|��|n

= −
∑
n

(��)n[�{(��̄)|��|}]n. (4.4)

Moreover, we have a discrete Leibnitz rule,

�(fg) = (�f )(�g) − fg

= (�f )�g + (�f )g (4.5)

and since|a − b|� |a| − |b| by the triangle inequality,

|�|f ||� |�f |, (4.6)

which is a discrete Kato inequality.
By (4.5),

�{(��̄)|��|} = [�(��̄)]�|��| + (�2�̄)|��|
so, by (4.6),

|�{(��̄)|��|}|� |�2�| |�(��̄)| + |�2�| |��|.
Using Hölder’s inequality with16 + 1

2 + 1
3 = 1 and (4.4), we get

‖��‖33�2‖�‖6‖�2�‖2‖��‖3
(because‖��‖p = ‖�‖p), so

∑
n

|(��)n|3�23/2
( ∑

n

|�n|6
)1/4( ∑

n

|(�2�)n|2
)3/4

. (4.7)

Having proven (4.7) for�’s of finite support, we get it for any� with the right-hand side
finite since

∑
n |�n|6 < ∞ implies�n → 0, which allows one to cut off� atN and take

N → ∞ in (4.7). But (4.7) implies (iv).
To prove (v), we control the individual terms in

∑
(−J̃j ). First,

‖|�|2|�2� − �|2‖1�‖ �2‖3 ‖|�2� − �|2‖3/2
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(by Hölder’s inequality with13 + 2
3 = 1)

�4‖�‖26 ‖��‖23 < ∞
(by first using‖�2� − �‖3�2‖��‖3 and then (iv)). Next,

|�2j+1 − �2j |2�(|�j+1| + |�j+1|)2|�j+1 − �j |2
can be controlled as the first term was and the final term is controlled in the same way since
|�j+1|2 − |�j |2� |�2j+1 − �2j |. �

Proof of Theorem 1.4. Suppose first that the right-hand side of (1.10) holds, that is,� ∈ �6

and�2� ∈ �2. Iteraten times (4.1)/Lemma 4.2 for thenth Bernstein–Szegő approximation
(with weightw(n)) to obtain

inf
n

[∫
(1− cos�)2 log(w(n)(�))

d�
2�

]
> −∞

since the left-hand side is just

inf
n


K̃

(n)
0 + L̃

(n)
0 + L̃

(n)
1 +

n−1∑
j=0

(H̃
(n)
j + Ĩ

(n)
j + J̃

(n)
j )


 ,

which is finite by Lemma4.3 and the hypothesis.Again, we have that
∫
(1−cos�)2 logw(�)

d�
2� is an entropy up to a constant and so upper semicontinuous. Thus RHS of (1.10)⇒ LHS
of (1.10).
For the opposite direction, as in the last section, we use iterated (4.1)/Lemma 4.2 plus

the fact that
∫
(1− cos�)2 log(w2m(�)) d�

2� is bounded from above to conclude

∞∑
j=0

−(H̃j + Ĩj + J̃j ) < ∞.

Since each is positive,
∑

(−H̃j ) < ∞, which implies
∑ |�j |6 < ∞ by (ii) of Lemma4.3,

and
∑∞

j=0(−Ĩj ) < ∞, which implies�2� ∈ �2. �

5. The general case

Finally, we turn to the general case of Theorem 1.3, and we define

Im ≡
∫ [

1− cos(� − �1)
][
1− cos(� − �2)

]
log

(
w(�)
wm(�)

)
d�
2�

. (5.1)

Using (2.9) and (2.10), we obtain

I1 = 4+ ei(�1−�2) + e−i(�1−�2)

4
A0 − Re

[
(ei�1 + ei�2)A1

]

+ 1
2Re

[
ei(�1+�2)A2

]
. (5.2)
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The situation is now somewhat more complicated than in the previous sections and it
will be more convenient to work withIm from the start, only keeping track of the essential
components of the sums (analogs of

∑
(Bj + Cj + Dj) and

∑
(H̃j + Ĩj + J̃j ) above) and

ignore the ones that are always bounded and hence irrelevant for us (analogs ofF0 − F1 +
G0 + G1 − Gm − Gm+1 andK̃0 − K̃m + L̃0 + L̃1 − L̃m + L̃m+1). Hence substituting
(2.6)–(2.8) in (5.2) and iterating, we obtain

Im = C�,m + 4+ ei(�1−�2) + e−i(�1−�2)

4

m−1∑
j=0

log(1− |�j |2)

+
m−1∑
j=0

Re
{(

ei�1 + ei�2
)
�j+1�̄j − 1

2e
i(�1+�2)

×[
�j+2�̄j (1− |�j+1|2) − 1

2�
2
j+1�̄

2
j

]}
,

where

C�,m ≡ −Re
[
(ei�1 + ei�2)(�0 − �m)

]

+1
2 Re

[
ei(�1+�2)

(1
2�

2
0 − 1

2�
2
m + �1 − �m+1 − �1|�20| + �m+1|�m|2)].

We let

�j ≡ �j e
i(�1+�2)j/2

and

a ≡ 1
2

(
ei(�1−�2)/2 + e−i(�1−�2)/2

) ∈ (−1,1).

We will assumea �= 0 since the case when�1 and�2 are antipodal follows from Theorem
3.1. WithC�,m ≡ C�,m and all the sums taken from 0 tom − 1, the above becomes

Im = C�,m + (1
2 + a2

) ∑
log(1− |�j |2) + a

∑ [
�j+1�̄j + �̄j+1�j

]

−1
4

∑ [
�j+2�̄j (1− |�j+1|2) + �̄j+2�j (1− |�j+1|2)

]

+1
8

∑ [
�2
j+1�̄

2
j + �̄

2
j+1�

2
j

]
. (5.3)

In the followingmanipulationswith the sums, wewill useC�,m as a general pool/depository
of terms that will be added/left over in order to keep all the sums from 0 tom− 1. Its value
will therefore change along the argument, but it will always depend on a few�j ’s with j
close to 0 orm only (i.e., it will gather all the “irrelevant” terms) andwill always be bounded
by a universal constant.

Lemma 5.1.WithC�,m universally bounded,we have

Im = C�,m + (1
2 + a2

) ∑ [
log(1− |�j |2) + |�j |2 + 1

2|�j |4
]

−1
4

∑
(1− |�j+1|2)

∣∣�j+2 − 2a�j+1 + �j

∣∣2
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−1
4

∑
|�j+1|2

∣∣�j+2 − 2a�j+1

∣∣2 − 1
4

∑
|�j+1|2

∣∣�j − 2a�j+1

∣∣2

−1
8

∑ ∣∣�2
j+1 − �2

j

∣∣2 + 1
2a

2
∑

|�j |4 (5.4)

with all the sums taken from0 tom − 1.

Remarks. 1. This enables us to prove the “⇐” part of (1.8) (even ifa = 0) since∣∣{(� − e−i�2)(� − e−i�1)�
}
j

∣∣ = ∣∣�j+2 − 2a�j+1 + �j

∣∣. (5.5)

But to prove the other implication, we first need to deal with the last sum in (5.4), which
has the “wrong” sign.
2. Note that we actually did not need to exclude the casea = 0 since then the last sum

in (5.4) vanishes and an examination of (5.4) shows that limm→∞ Im > −∞ if and only if
the RHS of (1.8) holds. An argument from the proofs of Theorems 1.3 and 1.4 then gives
the “⇒” part of (1.8).

Proof. Multiplying out the terms in the second, third, and fourth sums of (5.4) and after
obvious cancellations, we are left with

−1
4

∑ [
|�j+1|2

(
4a2|�j+1|2 − �j+2�̄j − �̄j+2�j

) + ∣∣�j+2 − 2a�j+1 + �j

∣∣2].
But this is just

− 1
4

∑ [|�j+2|2 + 4a2|�j+1|2 + |�j |2 + 4a2|�j+1|4
]

(5.6)

plus the second and third sums in (5.3), the latter written as

1
2a

∑
[�j+2�̄j+1 + �̄j+2�j+1 + �j+1�̄j + �̄j+1�j ]

(with C�,m keeping the change). Adding the fifth and sixth sums in (5.4) to (5.6) and
subtracting the last sum in (5.3), we obtain

−1
4

∑
(2+ 4a2)|�j |2 − 1

8

∑
(2+ 4a2)|�j |4

(again replacing all|�j+1| and|�j+2| by |�j | and adding the difference toC�,m). But this
together with the first sum in (5.4) gives exactly the first sum in (5.3).�

If we define

�j ≡ �j+2 − 2a�j+1 + �j

then the second, third, and fourth sums in (5.4) involve|�j |, |�j − �j | and |�j − �j+2|.
Using|x − y|2� |x|2 + |y|2 − 2|x||y| for the last two, we obtain (with a newC�,m)

(−8)Im � C�,m +
∑

O(|�j |6) +
∑

(2+ 2|�j+1|2)|�j |2

+4
∑

|�j+1|2|�j |2 − 4
∑

|�j+1|2
(|�j+2| + |�j |

)|�j |
+

∑ ∣∣�2
j+1 − �2

j

∣∣2 − 4a2
∑

|�j+1|4 (5.7)
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since

log(1− |�j |2) + |�j |2 + 1
2|�j |4 = O(|�j |6).

Next, we use−4xy� − 8x2 − 1
2y

2 with x = |�j+1|2(|�j+2| + |�j |) andy = |�j | to
estimate the fourth sum by

∑
O(|�j |6) − 1

2

∑ |�j |2. Also,
−4a2

∑
|�j+1|4 = −

∑
|�j+1|2|�j+2 + �j − �j |2

� −
∑

|�j+1|2|�j+2 + �j |2 −
∑

|�j+1|2|�j |2

−2
∑

|�j+1|2|�j+2 + �j ||�j |

� C�,m − 4
∑

|�j+1|2|�j |2 −
∑

|�j+1|2|�j |2

−
∑

O(|�j |6) − 1
4

∑
|�j |2

again using−2xy� − 4x2 − 1
4y

2. Plugging these into (5.7), we have

(−8)Im�C�,m +
∑

O(|�j |6) +
∑ (5

4 + |�j+1|2
)|�j |2 +

∑ ∣∣�2
j+1 − �2

j

∣∣2.
The last sum is just

∑ 1
2(|�2

j+2 − �2
j+1|2 + |�2

j+1 − �2
j |2) plus a piece that goes intoC�,m.

Letting ε ≡ 1
3 min{2|a|, 2− 2|a|} > 0, we obtain

|�j+1|2|�j |2 + 1
2|�2

j+2 − �2
j+1|2 + 1

2|�2
j+1 − �2

j |2� 1
2ε

4|�j+1|4.

Indeed, if the third term is smaller than12ε
4|�j+1|4, then |�j − �j+1| or |�j + �j+1|

is less thanε|�j+1|, and similarly for the second term. But then|�j+2 + �j |/|�j+1| ∈
[0, 2ε)∪ (2−2ε, 2+2ε) and so|�j |/|�j+1|� min{2|a| −2ε, 2−2ε −2|a|}�ε, meaning
that the first term is at leastε2|�j+1|4. So finally,

(−8)Im�C�,m +
∑

O(|�j |6) +
∑

|�j |2 + 1
2ε

4
∑

|�j |4

that is (by (5.5) and the definition of�j , �j ),

Im � C�,m +
∑

O(|�j |6) − 1
8

∑ ∣∣{(� − e−i�2)(� − e−i�1)�
}
j

∣∣2

− 1
16ε

4
∑

|�j |4. (5.8)

Proof of Theorem 1.3. If the RHS of (1.8) holds, then the RHS of (5.4) for thenth
Bernstein–Szegő approximation (withm�n) is bounded (inn), and so

inf
n

[ ∫ [
1− cos(� − �1)

][
1− cos(� − �2)

]
log(w(n)(�))

d�
2�

]
> −∞.
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By upper semicontinuity of the above integral (which is again an entropy up to a constant),
we obtain the LHS of (1.8).
Conversely, assume the LHS of (1.8) holds. Then the essential support ofw is all of �D,

and so by Rakhmanov’s theorem [13],|�j | → 0. Hence, starting from somej, we have
O(|�j |6)� 1

32ε
4|�j |4 and so

Im�D�,m − 1
8

∑ ∣∣{(� − e−i�2)(� − e−i�1)�
}
j

∣∣2 − 1
32ε

4
∑

|�j |4 (5.9)

for largem and some bounded (inm)D�,m. As in the previous sections,
∫ [

1− cos(� −
�1)

][
1− cos(�−�2)

]
log(wm(�)) d�

2� is bounded above, and soIm is bounded below by the
hypothesis. (5.9) then shows that the RHS of (1.8) holds.�
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